InterviewSolution
Saved Bookmarks
| 1. |
If `a x+b y=1`is tangent to the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1`, then `a^2-b^2`is equal to`1/(a^2e^2)`(b) `a^2e^2``b^2e^2`(d) none of theseA. `1//a^(2)e^(2)`B. `a^(2)e^(2)`C. `b^(2)e^(2)` none of theseD. none of these |
|
Answer» Correct Answer - A Any tangent to hyperbola is `(x)/(a) sec theta-(y)/(b) tan theta=1" (1)"` The given tangent is `ax+by=1" (2)"` Comparing (1) and (2), we have `sec theta=a^(2)and tan theta=-b^(2)` Eliminating `theta`, we have `a^(4)-b^(4)=1` `"or "(a^(2)-b^(2))(a^(2)+b^(2))=1` Also, `a^(2)+b^(2)=a^(2)e^(2)` `"or "a^(2)-b^(2)=(1)/(a^(2)e^(2))` |
|