 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `alpha and beta` are roots of the equation `x^(2)+5|x|-6=0,` then the value of `|tan^(-1)alpha-tan^(-1)beta|` isA. `pi/2`B. `0`C. `pi`D. `pi/4` | 
| Answer» Correct Answer - A Given `alph` and `beta` be the roots of the equation `x^(2) + 5|x| - 6= 0` Now, `|x|^(2) + 5|x| - 6 = 0` `|x|^(2 ) + 6|x| - |x|- 6 = 0` [by factorisation] `|x|(|x| +6) - 1(|x|+6) = 0` `(|x|+6)(|x|-1) = 0` `|x| = - 6` or `|x| = 1` (Since, modulus cannot be giving negative values ) `:. |x| = 1 rArr x = +- 1` So, `alpha = 1` and `beta = -1` `:.` Now, `|tan^(-1) alpha - tan^(-1) beta| = |tan^(-1) 1 - tan^(-1)(-1)|` `= |pi/4 - (-pi/4)| = |(pi)/(4) + (pi)/(4)| = |pi/2|` | |