

InterviewSolution
Saved Bookmarks
1. |
If `alpha` and `beta` are the roots of `ax^2+bx+c=0`, then the equation `ax^2-bx(x-1)+c(x-1)^2=0` has roots |
Answer» As `alpha` and `beta` are the roots of `ax^2+bx+c = 0`. `:. alpha+beta = -b/a and alphabeta = c/a` Now, second equation is, `ax^2-bx(x-1)+c(x-1)^2 = 0` `=>(a-b+c)x^2-x(b-2c)+c = 0` Let `m` and `n` are the roots of this equation. Then, `mn = c/(a-b+c) = (c/a)/(1-b/a+c/a)` `=(alpha beta)/(1+(alpha+beta)+alpha beta)` `=(alpha beta)/((1+alpha)+beta(1+alpha))` `:. mn=(alpha beta)/((1+alpha)(1+beta))->(1)` Now, `m+n = (2c-b)/(a-b+c) = ((2c)/a - b/a)/(1-b/a+c/a)` `= (2alpha beta + alpha+ beta)/(1+(alpha+beta)+alpha beta)` `= (alpha beta + alpha beta+ alpha+ beta)/(1+(alpha+beta)+alpha beta)` `= (alpha(beta+1)+beta(alpha+1))/((1+alpha)(1+beta))` `m+n= alpha/(alpha+1)+ beta/(beta+1)->(2)` From (1) and (2), `m = alpha/(alpha+1), n = beta/(beta+1)` |
|