1.

If `alpha` and `beta` are the roots of the equation `x^2-px + q = 0` then the value of `(alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+...` isA. `log(1+px+qx^(2))`B. `log(1+qx+px^(2))`C. `log(x^(2)+px+q)`D. none of these

Answer» Answer:
Since `alpha,beta` are the roots of the equation
`x^(2)-px+q=0`
`therefore alpha+beta=p and alpha beta=q`
Now
`(alpha+beta)x-(alpha^(2)+beta^(2))/(2)x^(2)+(alpha^(3)+beta^(3))/(3)x^(3)`…
`=((alpha x-alpha^(2))x^(2))/(2)+(alpha^(3)x^(3))/(3)+(betax-(beta^(2)x^(2))/(2)+(beta^(3)x^(3))/(3)`
`=log(1+alphax)+log(1+betax)`
`=log{(1+alphax)(1+betax)}`
`log{(1+alpha+beta)}x+alphabetax^(2)}=log(1+px+qx^(2))`


Discussion

No Comment Found