1.

If `alpha, beta` are roots of the equation `x^(2) + x + 1 = 0`, then the equation whose roots are `(alpha)/(beta) and (beta)/(alpha)`, isA. `x^(2) + x + 1 = 0`B. `x^(2) - x + 1 = 0`C. `x^(2) - x - 1 = 0`D. `x^(2) + x - 1 = 0`

Answer» Correct Answer - A
We hve, `alpha = omega and beta = omega^(2)`
`therefore" "(alpha)/(beta)=omega^(2) and (beta)/(alpha) = omega`
Hence, the equation having `(alpha)/(beta)` i.e. `omega^(2) and (beta)/(alpha)` i.e. `omega` as its roots is `x^(2) + x + 1 = 0`


Discussion

No Comment Found

Related InterviewSolutions