InterviewSolution
Saved Bookmarks
| 1. |
If `alpha, beta` are roots of the equation `x^(2) + x + 1 = 0`, then the equation whose roots are `(alpha)/(beta) and (beta)/(alpha)`, isA. `x^(2) + x + 1 = 0`B. `x^(2) - x + 1 = 0`C. `x^(2) - x - 1 = 0`D. `x^(2) + x - 1 = 0` |
|
Answer» Correct Answer - A We hve, `alpha = omega and beta = omega^(2)` `therefore" "(alpha)/(beta)=omega^(2) and (beta)/(alpha) = omega` Hence, the equation having `(alpha)/(beta)` i.e. `omega^(2) and (beta)/(alpha)` i.e. `omega` as its roots is `x^(2) + x + 1 = 0` |
|