InterviewSolution
Saved Bookmarks
| 1. |
If alpha, beta, gamma in {1,omega,omega^(2)} (where omega and omega^(2) are imaginery cube roots of unity), then number of triplets (alpha,beta,gamma) such that |(a alpha+b beta+c gamma)/(a beta+b gamma+c alpha)|=1 is |
|
Answer» `3` `implies` When `ALPHA`, `beta`, `gamma` are different, then number of triplet `(alpha,beta,gamma)=` permutation of `1`, `omega` and `omega^(2)=6` and when `alpha-beta=gamma`, number of TRIPLETS `=3`. |
|