1.

If alpha, beta, gamma in {1,omega,omega^(2)} (where omega and omega^(2) are imaginery cube roots of unity), then number of triplets (alpha,beta,gamma) such that |(a alpha+b beta+c gamma)/(a beta+b gamma+c alpha)|=1 is

Answer»

`3`
`6`
`9`
`12`

Solution :`(C )` As `|(aalpha+bbeta+cgamma)/(a beta+bgamma+calpha)|=1`
`implies` When `ALPHA`, `beta`, `gamma` are different, then number of triplet `(alpha,beta,gamma)=` permutation of `1`, `omega` and `omega^(2)=6` and when `alpha-beta=gamma`, number of TRIPLETS `=3`.


Discussion

No Comment Found

Related InterviewSolutions