Saved Bookmarks
| 1. |
If an experiment to measure coefficient of viscosity radius of tube measured r = (0.100 +- 0.001) cm and length 1 = (50.0 +- 0.1) cm and volume of fluid coming out of capillary in unit time is V = (0.25 +-0.01) cm//^(2). If pressure difference between end of tube is p = 10^(6) dyne/ cm^(2), then by using Poeisullie's law V=(pi pr^(4))/(8 eta l) Find coefficient of viscosity. |
|
Answer» Solution :By using Poesullie.s law. `V=(pi p r^(4))/(8 etal)` `:. eta=(pi p r^(2))/(8 Vl) ""...(1)` `=(3.14xx10^(6)xx(0.1)^(4))/(8xx50xx0.25)` `=3.14` POISE Relative error in `eta` `(Delta eta)/(eta)=((Deltar)/(r))+((DeltaV)/(V))+((Deltal)/(L)) "" [ :. (pi)/(8)` CONSTANT ] `=4xx(0.001)/(0.1)+(0.01)/(0.25)+(0.1)/(50)` `=0.04+0.04+0.002` `=0.082` `:.(Delta eta)/(3.14)=0.082` `:.Delta eta=0.0082xx3.14` `=0.25748~~0.257` `:. eta+Deltan=(3.14+-0.257)` Poise OR Second method : `(Delta eta)/(eta)XX100%=0.082xx100%` `=8.2` `:. eta=3.14+-8.2%` Poise |
|