1.

If an experiment to measure coefficient of viscosity radius of tube measured r = (0.100 +- 0.001) cm and length 1 = (50.0 +- 0.1) cm and volume of fluid coming out of capillary in unit time is V = (0.25 +-0.01) cm//^(2). If pressure difference between end of tube is p = 10^(6) dyne/ cm^(2), then by using Poeisullie's law V=(pi pr^(4))/(8 eta l) Find coefficient of viscosity.

Answer»

Solution :By using Poesullie.s law.
`V=(pi p r^(4))/(8 etal)`
`:. eta=(pi p r^(2))/(8 Vl) ""...(1)`
`=(3.14xx10^(6)xx(0.1)^(4))/(8xx50xx0.25)`
`=3.14` POISE
Relative error in `eta`
`(Delta eta)/(eta)=((Deltar)/(r))+((DeltaV)/(V))+((Deltal)/(L)) "" [ :. (pi)/(8)` CONSTANT ]
`=4xx(0.001)/(0.1)+(0.01)/(0.25)+(0.1)/(50)`
`=0.04+0.04+0.002`
`=0.082`
`:.(Delta eta)/(3.14)=0.082`
`:.Delta eta=0.0082xx3.14`
`=0.25748~~0.257`
`:. eta+Deltan=(3.14+-0.257)` Poise
OR
Second method :
`(Delta eta)/(eta)XX100%=0.082xx100%`
`=8.2`
`:. eta=3.14+-8.2%` Poise


Discussion

No Comment Found