1.

If `d/(dx)f(x)=4x^3-3/(x^4)`such that `f(2)=0.`Then f(x) is(A) `x^4+1/(x^3)-(129)/8` (B) `x^3+1/(x^4)+(129)/8`(C) `x^4+1/(x^3)+(129)/8` (D) `x^3+1/(x^4)-(129)/8`A. `x^(4)+(1)/(x^(3))-(129)/(8)`B. `x^(3)+(1)/(x^(4))+(129)/(8)`C. `x^(4)+(1)/(x^(3))+(129)/(8)`D. `x^(3)+(1)/(x^(4))-(129)/(8)`

Answer» Correct Answer - A
Given, `(d)/(dx)f(x)=4x^(3)-(3)/(x^(4))`
`rArr" Anti - derivative of "(4x^(3)-(3)/(x^(4)))=f(x)`
`therefore" "f(x)=int(4x^(3)-(3)/(x^(4)))dx=4intx^(3)dx-3 int x^(-4)dx`
`rArr" "f(x)=4((x^(4))/(4))-3 ((x^(-3))/(-3))+C=x^(4)+(1)/(x^(3))+C`
Also, `f(2)=0`
`therefore" "f(2)=(2)^(4)+(1)/((2)^(3))+C`
`rArr" "16+(1)/(8)+C=0 rArr C=-(16+(1)/(8))`
`rArr" "C=-(129)/(8)`
`therefore" "f(x)=x^(4)+(1)/(x^(4))-(129)/(8).`


Discussion

No Comment Found