InterviewSolution
Saved Bookmarks
| 1. |
if f, g, andh aredifferentiablefunction of x and Delta (x)=|{:(f,,g,,h),((xf)',,(xg)',,(xh)'),((x^(2)f)'',,(x^(2) g)'',,(x^(2)h)''):}| " prove that" Delta (x)=|{:(f,,g,,h),(f',,g,,h),((x^(3)f'')',,(x^(3) g'')',,(x^(3)h'')'):}| " where prime"(') denotes thederivatives . |
|
Answer» Solution :` (xf) =xf' +f "and " (X^(2)f)''` `=[2xf+ x^(2) f]'` ` =2f +4xf'+ x^(2) f''` `rArr Delta =| {:( f,,g,,h),(xf+f,,xg'+g,,XH'+h),(2f+4xf+x^(2)f'',,2g+4xg'+x^(2)g'',,2h+4xh+x^(2)h''):}| ` `R_(2) to R_(2) -R_(1) " ANDTHEN " R_(3) toR_(3) -4R_(2) -2R_(1)` `rArr Delta = |{:(f,,g,,h),(xf,,xg,,xh),(x^(2)f,,x^(2)g,,x^(2)h):}|` `Delta = |{:(f,,g,,h),(xf,,xg,,xh),(x^(3)f,,x^(3)g,,x^(3)h):}|` `rArr (dDelta)/(dx) = |{:(f',,g',,h'),(f',,g',,h'),(x^(3)f'',,x^(3)g'',,x^(3) h''):}|+|{:(f,,g,,h),(f'',,g'',,h''),(x^(3)f'',,x^(3)g'',,x^(3)h''):}|` `+|{:(f,,g,,h),(f',,g',,h'),((x^(3)f'')',,(x^(3)g'')',,(x^(3)h'')'):}|` `=0+0+ |{:(f,,g,,h),(f',,g',,h'),((x^(3)f'')',,(x^(3)g'')',,(x^(3)h'')'):}|` |
|