1.

if f, g, andh aredifferentiablefunction of x and Delta (x)=|{:(f,,g,,h),((xf)',,(xg)',,(xh)'),((x^(2)f)'',,(x^(2) g)'',,(x^(2)h)''):}| " prove that" Delta (x)=|{:(f,,g,,h),(f',,g,,h),((x^(3)f'')',,(x^(3) g'')',,(x^(3)h'')'):}| " where prime"(') denotes thederivatives .

Answer»

Solution :` (xf) =xf' +f "and " (X^(2)f)''`
`=[2xf+ x^(2) f]'`
` =2f +4xf'+ x^(2) f''`
`rArr Delta =| {:( f,,g,,h),(xf+f,,xg'+g,,XH'+h),(2f+4xf+x^(2)f'',,2g+4xg'+x^(2)g'',,2h+4xh+x^(2)h''):}| `
`R_(2) to R_(2) -R_(1) " ANDTHEN " R_(3) toR_(3) -4R_(2) -2R_(1)`
`rArr Delta = |{:(f,,g,,h),(xf,,xg,,xh),(x^(2)f,,x^(2)g,,x^(2)h):}|`
`Delta = |{:(f,,g,,h),(xf,,xg,,xh),(x^(3)f,,x^(3)g,,x^(3)h):}|`
`rArr (dDelta)/(dx) = |{:(f',,g',,h'),(f',,g',,h'),(x^(3)f'',,x^(3)g'',,x^(3) h''):}|+|{:(f,,g,,h),(f'',,g'',,h''),(x^(3)f'',,x^(3)g'',,x^(3)h''):}|`
`+|{:(f,,g,,h),(f',,g',,h'),((x^(3)f'')',,(x^(3)g'')',,(x^(3)h'')'):}|`
`=0+0+ |{:(f,,g,,h),(f',,g',,h'),((x^(3)f'')',,(x^(3)g'')',,(x^(3)h'')'):}|`


Discussion

No Comment Found

Related InterviewSolutions