1.

If `f(x) = log_([x-1])(|x|)/(x)`,where [.] denotes the greatest integer function,thenA. `D(f) = [3, oo), R(f) = {0, 1} `B. `D(f) = [ 3, oo), R(f) = [3, oo), R(f)= {0}`C. `D(f) = (2, oo), R(f) = {0, 1}`D. `D(f) = (3, oo), R(f) = {0}`

Answer» Correct Answer - B
f(x) is defined for all x satisfying.
`[x-1] gt 0, [x -1] ne 1 and (|x|)/(x) gt 0`
Now ,`[x-1] gt 0, [x-1] ne 1 rArr x in [3,oo)`
and, `(|x|)/(x) gt 0 rArr x gt 0`
`therefore " "f(x) = log_([x-1])(|x|)/(x) = log_([x-1])1=0`
So, `R(f) ={0}`


Discussion

No Comment Found

Related InterviewSolutions