InterviewSolution
Saved Bookmarks
| 1. |
If `f(x) = log_([x-1])(|x|)/(x)`,where [.] denotes the greatest integer function,thenA. `D(f) = [3, oo), R(f) = {0, 1} `B. `D(f) = [ 3, oo), R(f) = [3, oo), R(f)= {0}`C. `D(f) = (2, oo), R(f) = {0, 1}`D. `D(f) = (3, oo), R(f) = {0}` |
|
Answer» Correct Answer - B f(x) is defined for all x satisfying. `[x-1] gt 0, [x -1] ne 1 and (|x|)/(x) gt 0` Now ,`[x-1] gt 0, [x-1] ne 1 rArr x in [3,oo)` and, `(|x|)/(x) gt 0 rArr x gt 0` `therefore " "f(x) = log_([x-1])(|x|)/(x) = log_([x-1])1=0` So, `R(f) ={0}` |
|