 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `f(x)={{:(x^(2)+alpha," for "xge0),(2sqrt(x^(2)+1)+beta," for "xlt0):}` is continuous at x=0 and `f((1)/(2))=2`, then `alpha^(2)+beta^(2)` isA. 3B. `(8)/(25)`C. `(25)/(8)`D. `(1)/(3)` | 
| Answer» Correct Answer - C We have, `f(x)={(x^(2)+alpha",",xge0),(2sqrt(x^(2)+1)+beta",",xlt0):}` is continuous at x=0. `:.underset(xto0^(-))(lim)f(x)=underset(xto0^(+))(lim)f(x)=f(0)` `rArrunderset(xto0^(-))(lim)x^(2)+alpha=underset(xto0^(+))(lim)2sqrt(x^(2)+1)+beta=alpha" "[becausef(0)=alpha]` `rArr" "alpha=2+beta` `rArralpha-beta=2` . . . (i) Given, `f((1)/(2))=2` `f((1)/(2))=((1)/(2))^(2)+alpha" "[because(1)/(2)lt0]` `rArr2=(1)/(4)+alpha` `rArralpha=(7)/(4)` On putting the value of in Eq. (i), we get `beta=(7)/(4)-2=-(1)/(4)` Hence `alpha^(2)+beta^(2)=((7)/(4))^(2)+((-1)/(4))^(2)` `=(49+1)/(16)=(50)/(16)=(25)/(8)` | |