1.

If f' ((x)/(y)), f(x)/(y))=(x^(2)+y^(2))/(xy) AA x,y in R^(+) and f(1)=1, then f^(2) (x)is

Answer»

`X+In x`
`x^(2)+2Inx`
`x^(2)+In x`
`x+2In x`

Solution :`F'((x)/(y)).f((y)/(x))=(x^(2)+y^(2))/(xy)….(i)`
Interchanging x,y we GET
`f'((x)/(y)),f((y)/(x))=f'((y)/(x))f((x)/y)`
`impliesInf((x)/(y))=INF((y)/(x))+C`
Putting x=y,`
we get `f'((x)/(y)).f((y)/(x))=f'((y)/(x))f((x)/(y))`
`implies In f((x)/(y)) = In f((y)/(x))+C`
Putting x=y, we get C=0
`impliesf((x)/(y))=f((y)/(x))...(ii)`
Putting y=1, in equation (i) and (ii), we get
`impliesf'(x)f((1)/(x)) =(x^(2)+1)/(x)` and `f(x)=f((1)/(x))`
`impliesf'(x)f(x)=x+(1)/(x)`
`implies (f(x))^(2)=x^(2)+2ln x`


Discussion

No Comment Found

Related InterviewSolutions