

InterviewSolution
Saved Bookmarks
1. |
If \(\frac{b}{x-a}\) = \(\frac{x+a}{b}\) then the value of x in terms of a and b isA) \(\sqrt{a^2+b^2}\)B) ± \(\sqrt{a^2+b^2}\)C) - \(\sqrt{a^2+b^2}\)D) ± \(\sqrt{a^2-b^2}\) |
Answer» Correct option is (B) \(\pm\sqrt{a^2+b^2}\) We have \(\frac{b}{x-a}=\frac{x+a}{b}\) \(\Rightarrow b^2=(x+a)(x-a)\) (By cross multiplication) \(\Rightarrow x^2-a^2=b^2\) \((\because(x+a)(x-a)=x^2-a^2)\) \(\Rightarrow x^2=a^2+b^2\) \(\Rightarrow x=\pm\sqrt{a^2+b^2}\) Correct option is B) ± \(\sqrt{a^2+b^2}\) |
|