1.

If `int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C`, where C is a constant of integration, then g(-1) is equal toA. -1B. 1C. `-(1)/(2)`D. `-(5)/(2)`

Answer» Correct Answer - D
Let given integral, `I = int x^(5) e^(-x^(2)) dx`
Put `x^(2) = t rArr 2xdx = dt`
So, `I=(1)/(2)int t^(2)e^(-1)dt`
`=(1)/(2)[(-t^(2)e^(-t))+inte^(-t)(2t)dt]" "["Integration by parts"]`
`=(1)/(2)[-t^(2)e^(-t)+2t(-e^(-t))+int 2e^(-t)dt]`
`=(1)/(2)[-t^(2)e^(-t)-2te^(-t)-2e^(-t)]+C`
`=-(e^(-t))/(2)(t^(2)+2t+2)+C`
`=-(e^(-x^(2)))/(2)(x^(4)+2x^(2)+2)+C" "[therefore t = x^(2)]" "....(i)`
`therefore` It is given that, `I=int x^(5)e^(-x^(2))dx = g(x)*e^(-x^(2))+C`
By Eq. (i), comparing both sides, we get `g(x)=-(1)/(2)(x^(4)+2x^(2)+2)`
So, `g(-1)=-(1)/(2)(1+2+2)=-(5)/(2)`


Discussion

No Comment Found

Related InterviewSolutions