 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `log_(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2`, then `(dy)/(dx)=`A. `(x)/(y)`B. `-(y)/(x)`C. `-(x)/(y)`D. `(y)/(x)` | 
| Answer» Correct Answer - D Given, `log_(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2` `rArr" "(x^(3)-y^(3))/(x^(3)+y^(3))=10^(2)=100` `rArrx^(3)-y^(3)=100(x^(3)+y^(3))` `rArr101y^(3)=-99x^(3)` On differentiating both sides w.r.t.x, we get `101xx3y^(2)(dy)/(dx)=-99*(3x^(2))` `rArr101y^(2)(dy)/(dx)=-99x^(2)` On multiplying by x both sides, we get `rArr101xy^(2)(dy)/(dx)=-99x^(3)` `rArr(dy)/(dx)=(-99x^(3))/(101xy^(2))` `rArr(dy)/(dx)=(101y^(3))/(101xy^(2))" "[because-99x^(3)=101y^(3)]` `rArr(dy)/(dx)=(y)/(x)` | |