Saved Bookmarks
| 1. |
If log3 2, log3 (2x – 5), and log3 (2x – 7/2) are in A.P., the value of x is(a) 0 (b) \(\frac{1}{3}\)(c) 2 (d) 3 |
|
Answer» Answer : (d) 3 log3 2, log3 (2x – 5) and log3 (2x - \(\frac{7}{2}\)) are in A.P ⇒ 2 log3 (2x – 5) = log3 2 + log3 (2x – 7/2) (∵ a, b, c in A.P ⇒ 2b = a + c) ⇒ log3 (2x – 5)2 = log3[2(2x – 7/2)] (∵ a log b = log ba and log a + log b = log ab) ⇒ (2x – 5)2 = 2x+1 – 7 Let 2x = y. Then, (y – 5)2 = 2y – 7 ⇒ y2 – 10y + 25 = 2y – 7 ⇒ y2 – 12y + 32 = 0 ⇒ (y – 8) (y – 4) = 0 ⇒ y = 8 or 4 ⇒ 2x = 8 or 2x = 4 2x = 8 ⇒ x = 3 (∵ 2x = 4 shall make the term log3(2x – 5) negative which is not possible) |
|