Saved Bookmarks
| 1. |
If momentum (p), area (A) and time (T) are taken to be fundamental quantities, then energy has the dimensional formula. |
|
Answer» `(pA^(-1)T^(1)]` We can write energy E as `E PROP p^(A)A^(b)T^(c)` `E= kp^(a)A^(A)T^(c)` `:. [E]=[p]^(a)[A]^(A)[T]^(c)` where K is DIMENSIONLESS constant of proportionality Dimensions of `E=[E]=[M^(1)L^(2)T^(-2)] and p]=[M^(1)L^(1)T^(-1)]` `[A]=[L^(2)]` `[T]=[T^(1)]` Putting all the dimensions, we get `M^(1)L^(2)T^(-2)=[M^(1)L^(1)T^(-1)]^(a)[L^(2)][T]^(c)` `:. M^(1)L^(2)T^(-2)=M^(a)L^(2b+b)T^(-a+c)` By comparison of power `a=1, 2b+a=2` `:.2b+1=2` `b=(1)/(2)` `-a+c=-2` `c=-2+a=-2+1=-1` Thus`|E|=[pA^((1)/(2))T^(-1)]` |
|