

InterviewSolution
Saved Bookmarks
1. |
If `""^(n)C_(r -1) = 36, ""^(n)C_(r) = 84 " and " ""^(n)C_(r +1) = 126`, then find the value of `""^(r)C_(2)`. |
Answer» Correct Answer - n = 9 and r = 3 We know that, `(""^(n)C_(r))/(""^(n)C_(r - 1)) = (n - r + 1)/(r)` `rArr " " 84/36 = 7/3 = (n - r + 1)/(r) " "` [given] `rArr " " 3n - 10r + 3 = 0 " "….(i)` Also given, `(""^(n)C_(r))/(""^(n)C_(r + 1)) = 84/126` `rArr " " (r + 1)/(n - r) = 2/3` `rArr" " 2n - 5r - 3 = 0 " "..(ii)` On solving Eqa. (i) and (ii), we get r = 3 and n = 9 |
|