1.

If oneroot of the quadratic equationax^(2)+bx+c=0 is equal to the nth powerof the other , then show that (ac^n)^((1)/(n+1))+(a^(n)c)^((1)/(n+1))+b=0.

Answer»

`[(ac^n)^(1/(n+1))]+[(ca^n)^(1/(n+1))]+B^n=0`
`[(ac^n)^(1/(n+1))]+[(ca^n)^(1/(n+1))]-b=0`
`[(ac^n)^(1/(n+1))]+[(ca^n)^(1/(n+1))]+b=0`
`[(ac^n)^(1/(n+1))]+[(ca^n)^(1/(n+1))]+1/(b^(n+1))=0`

ANSWER :C


Discussion

No Comment Found