InterviewSolution
Saved Bookmarks
| 1. |
If p =a + bomega + comega^(2),q = b + comega+ aomega^(2), and r =c + aomega +bomega^(2), where a,b,c ne 0 and omega is the complex cuberoot of unity , then . |
|
Answer» If p,Q,r lie on the CIRCLE|z|=2, the trinagleformed by these POINTIS equilateral. `therefore p +q+ r = (a+b+c)(1+ omega + omega^(2))=0` p,q,r lie on the circle `|z|=2`, whosecircumcenter is origin. Also `(p+q+ r)//3=0` . Hence the cenroidwith cicumcenter. So, the triangle is equilateral. Now ,`(P +q+ r)^(2)= 0` `rArr p^(2) +q^(2) + r^(2) = -2pqr[(1)/(p)+(1)/(q) +(1)/(r)]` `=-2pqr[(1)/(a+bomega+comega^(2))+(1)/(omega(bomega^(2)+c+aomega^(2)))+(1)/(c+aomega +bomega^(2))]` `=2pqr[(1)/(omega^(2)(aomega +bomega^(2)+c))+(1)/(omega(bomega^(2) + c+ aomega))+(1)/(c+aomega+bomega^(2))]` `(-2pqr)/(aomega+ bomega^(2)+c)[(1)/(omega^(2))+(1)/(omega)+ (1)/(1)]= 0""(2)` Hence `p^(2)+q^(2) + r^(2) = 2` (pq + qr + rp)` |
|