1.

If Sn denotes the sum of n terms of an A.P., then Sn + 3 – 3Sn + 2 + 3Sn + 1 – Sn is equal to(a) 0 (b) 1 (c) 2 (d) 3

Answer»

(a) 0

Sn + 3 – 3Sn + 2 + 3Sn + 1 – Sn 

= (Sn + 3 – Sn + 2) – 2 (Sn + 2 – Sn + 1) + (Sn + 1 – Sn

= tn + 3 – 2tn + 2 + tn + 1                           ... (i) 

( tn = Sn – Sn – 1)

∵ tn + 1, tn + 2, tn + 3 are consecutive terms of an A.P, 

2tn + 2 = tn + 1 + tn + 3                             ...(ii)

∴ From (i) 

Reqd. Sum = (tn + 3 + tn + 1) – 2tn + 2 

= 2tn + 2 – 2tn + 2 = 0                              (Using (ii))



Discussion

No Comment Found