

InterviewSolution
Saved Bookmarks
1. |
If speed of light (c), acceleration due to gravity (g) and pressure (P) are taken as fundamental units, the dimensions of gravitational constant (G) are |
Answer» <html><body><p>`[c^(0)gP^(-3)]`<br/>`[c^(2)g^(3)P^(-2)]`<br/>`c^(0)g^(2)P^(-<a href="https://interviewquestions.tuteehub.com/tag/1-256655" style="font-weight:bold;" target="_blank" title="Click to know more about 1">1</a>)]`<br/>`c^(2)g^(2)P^(-2)]`</p><a href="https://interviewquestions.tuteehub.com/tag/solution-25781" style="font-weight:bold;" target="_blank" title="Click to know more about SOLUTION">SOLUTION</a> :Let`G= kc^(x)g^(y)P^(z)` <br/>Where k is a dimensionless constant. <br/> `:. [M^(-1)L^(3)T^(-2)]= [LT^(-1)]^(x)[LT^(-2)]^(y)[ML^(-1)T^(-2)]^(z)= [M^(z)L^(x+y-z)T^(-x-2y-2z)]` <br/> Applying <a href="https://interviewquestions.tuteehub.com/tag/principle-1166255" style="font-weight:bold;" target="_blank" title="Click to know more about PRINCIPLE">PRINCIPLE</a> of <a href="https://interviewquestions.tuteehub.com/tag/homogeneity-1028735" style="font-weight:bold;" target="_blank" title="Click to know more about HOMOGENEITY">HOMOGENEITY</a> of dimensions we get, <br/> z=- 1...(i) <br/> x+y-z= 3...(ii) <br/>-x-2y-2z= -2,..(iii) <br/> On solving (i), (ii) and (iii) we get, <br/> `x=0, y=2, z=-1 :. [G]= [c^(0)g^(2)P^(-1)]`</body></html> | |