 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If tangents are drawn to the parabola y=x^(2)+bx+c or b and c fixed real number at the points (i,y_(i)) for i=1,2,…,10. Lt l_(1), l_(2), l_(3)…….l_(9) be the point intersection of tangents at (i,y) and (i+1,y_(i+1)) then the least polynomial satisfying whose graph passes through all nine points | 
| Answer» `y=X^(2)+bx+c` `y=(2i+B)x-i^(2)+c` Also at `(i+1,y_(i+1)),y=(2i+1)+b)x-(i+1)^(2)+c` Point of INTERSECTION is `x=(2i+1)/2impliesi=(2x-1)/2` Put this `i` in any tangent we get `y=x^(2)+bx+c-1/4` | |