1.

If the distance between the points P(a, 2, 1) and Q(1, -1, 1) is 5 units, find the value of a.

Answer»

Given: distance between the points P(a, 2, 1) and Q(1, -1, 1) is 5 units 

To find: the value of a 

Formula used: The distance between any two points (a, b, c) and (m, n, o) is given by,

\(\sqrt{(a-m)^2+(b-n)^2+(c-o)^2}\)

PQ = 5 units 

The distance between points P(a, 2, 1) and Q(1, -1, 1) is PQ

\(\sqrt{(a-1)^2+(2-(-1))^2+(1-1)^2}\)

 ⇒\(\sqrt{(a-1)^2+3^2+0^2}\) = 5

 ⇒ \(\sqrt{a^2+1-2a+9+0}\) = 5

 ⇒ \(\sqrt{a^2-2a+10}\) = 5

Squaring both sides: 

⇒a2 – 2a + 10 = 25 

⇒ a2– 2a + 10 – 25 = 0 

⇒ a2 – 2a – 15 = 0 

⇒ a2 – 5a + 3a – 15 = 0 

⇒ a(a – 5) + 3(a – 5) = 0 

⇒ (a – 5) (a + 3) = 0 

⇒ a = 5 or -3 

Hence, the value of a is 5 or -3



Discussion

No Comment Found