1.

If The Letters Of The Word Chasm Are Rearranged To Form 5 Letter Words Such That None Of The Word Repeat And The Results Arranged In Ascending Order As In A Dictionary What Is The Rank Of The Word Chasm ?

Answer»

The 5 letter WORD can be rearranged in 5!=120 Ways without any of the letters repeating.

The first 24 of these words will start with A.

Then the 25TH word will start will CA _ _ _. 

The remaining 3 letters can be rearranged in 3!=6 Ways. i.e. 6 words exist that start with CA.

The next word starts with CH and then A, i.e., CHA _ _. 

The first of the words will be CHAMS. The next word will be CHASM.

THEREFORE, the RANK of CHASM will be 24+6+2= 32.

The 5 letter word can be rearranged in 5!=120 Ways without any of the letters repeating.

The first 24 of these words will start with A.

Then the 25th word will start will CA _ _ _. 

The remaining 3 letters can be rearranged in 3!=6 Ways. i.e. 6 words exist that start with CA.

The next word starts with CH and then A, i.e., CHA _ _. 

The first of the words will be CHAMS. The next word will be CHASM.

Therefore, the rank of CHASM will be 24+6+2= 32.



Discussion

No Comment Found

Related InterviewSolutions