1.

If the roots of the equation a(b - c)x2 + b(c - a)x + c(a - b) = 0 are equal, show that 2/b=1/a+1/c.

Answer»

Since the roots of the given equations are equal, so discriminant will be equal to zero.

=> b2(c - a)2 - 4a(b - c) . c(a - b) = 0

=> b2(c2 + a2 - 2ac) - 4ac(ba - ca - b2 + bc) = 0,

=> a2b2 + b2c2 + 4a2c2 + 2b2ac - 4ac2bc - 4abc2 = 0 

=> (ab + bc - 2ac)2 = 0

=> ab + bc - 2ac = 0 

=> ab + bc = 2ac

=> 1/c+1/a=2/b

=> 2/b=1/a+1/c.

Hence Proved.



Discussion

No Comment Found