InterviewSolution
Saved Bookmarks
| 1. |
If the solution of the differential equation (dy)/(dx)-y((x^(4)+3x^(2))/((x^(2)+1)^(2)))=(4x+3)e^((x^(3))/(e^(2)+1)) is in the form y =f(x) (where f(0)=1), then f(A)+f(-1) is |
|
Answer» `2sqrt(E)` `impliesye^((-x^(5))/(x^(2)+1))=int(4x+3)dx` `impliesf(x)=y=(2x^(2)+3x+1)e^((x^(3))/(x^(2)+1)` `impliesf(1)=6sqrt(e)` & `f(-1)=0` `impliesf(-1)=0` |
|