

InterviewSolution
Saved Bookmarks
1. |
If the zeroes of the quadratic polynomial `x^(2) +(a+1)x+b` are 2 and -3, thenA. `a =- 7, b =- 1`B. `a = 5, b=-1`C. `a =2, b =- 6`D. `a =0, b=-6` |
Answer» Correct Answer - D Let `p(x) =x^(2) +(a+1)x+b` Given that , 2 and -3 are the zeroes of the quadratic polynomial p(x). `:. p(2)=0` and `p (-3)=0` `rArr 2^(2)+(a+1) (2)+b =0` `rArr 4+2a +2 +b = 0` `rArr 2a +b =- 6` ..(i) and `(-3)^(2) +(a+1) (-3)+b = 0` `rArr 9 - 3a - 3 +b = 0` `rArr 3a - b = 6` ...(ii) On adding Eqs.(i) and (ii), we get `5a = 0 rArr a = 0` Put the valye of a in Eq (i), we get `2 xx 0 +b =- 6 rArr b =- 6` So, the required values are `a = 0` and `b =- 6` |
|