1.

If \(\vec a= \hat i + \hat j + \hat k, \,\vec a .\,\vec b = 1 \) and \(\vec a \times \vec b = \hat j - \hat k\), then find \(|\vec b|\).

Answer»

\(\vec a = \hat i + \hat j + \hat k\)

Let \(\vec b = b_1\hat i + b_2\hat j + b_3 \hat k\)

\(\therefore \vec a . \vec b = 1\)

⇒ \((\hat i + \hat j + \hat k). (b_1 \hat i + b_2 \hat j + b_3 \hat k)=1\)

⇒ \(b_1 + b_2 + b_3 = 1\)     .....(1)

\(\vec a \times \vec b = \hat j - \hat k\)

⇒ \(\begin{vmatrix}\hat i &\hat j&\hat k\\1&1&1\\b_1&b_2&b_3\end{vmatrix} = \hat j - \hat k\)

⇒ \(\hat i (b_3 - b_2) + j(b _1 - b_3 )+ \hat k (b_2 - b_1) = \hat j - \hat k\)

\(\therefore b_3 - b_2 = 0 \)

⇒ \(b_3 = b_2\)     .....(2)

\(b_1 - b_3 = 1\)

⇒ \(b_1 = 1 + b_3\)     .....(3)

\(b_2- b_1 = -1\)       .....(4)

⇒ \(b_2 - (1 + b_3 ) = -1\)

⇒  \(b_2 - 1- b_3 = -1\)

⇒ \(b_2 = b_3\)

From (1) & (2),

\(b_1 + 2 b_2 = 1\)       ......(5)

From (2), (3), (5), we get

\(1 + b_3 + 2b_3 = 1\)

⇒ \(3b_3 = 0\)

⇒ \(b_3 = 0\)

\(\therefore b_2 = 0\)      (From(2))

\(\therefore b_1= 1\)      (From(1))

Hence,

\(b_1 = 1 , \, b_2 = 0, \, b_3 = 0\)

\(\therefore \vec b= \hat i\)  & \(|\vec b = 1|\)



Discussion

No Comment Found

Related InterviewSolutions