1.

If vectors : vec(p)=ahat(i)+hat(j)+hat(k),vec(q)=hat(i)+bhat(j)+hat(k),vec(r)=hat(i)+hat(j)+chat(k)(ane1,b ne1,c ne1) are coplanar, then value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

Answer»

0
1
-1
2

Solution :`I=underset(1)overset(2)(int)(e^(X))/(x)dx`
`f(x)=(e^(x))/(x),f'(x)=((x-1)e^(x))/(x^(2))gt 0 [AA x in (1,2)]`
`rarrIgtAr.[ACDE]`
` I gt e xx 1 IMPLIES I gt e ....(1)`
`rarr I lt "AREA of trapezium ABCDE"`
`ILT (1)/(2)(1)[e+(e^(2))/(2)]`
`I lt (e)/(2)+(e^(2))/(4)"".......(2)`
`(I gt 3+(e)/(2))` is false from (2)


Discussion

No Comment Found

Related InterviewSolutions