 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `x=(1-t^(2))/(1+t^(2))` and `y=(2t)/(1+t^(2))`, then `(dy)/(dx)` is equal toA. `(a(1-t^2))/(2t)`B. `(a(t^(2)-1))/(2t)`C. `(a(t^(2)+1))/(2t)`D. `(a(t^(2)-1))/(t)` | 
| Answer» Correct Answer - B Given, `x=(1-t^(2))/(1+t^(2)) and y=(2at)/(1+t^(2))` On differentiating w.r.t. respectively, we get `(dx)/(dt)=((1+t^(2))(0-2t)-(1-t^(2))(0+2t))/((1+t^(2))^(2))` `=(-4t)/((1+t^(2))^(2))` and `(dy)/(dt)=((1+t^(2))2a-2at(2t))/((1+t^(2))^(2))=(2a(1-t^(2)))/((1+t^(2))^(2))` `:. (dy)/(dx)=(dy//dt)/(dx//dt)=(a(1-t^(2)))/(-2t)` `rArr (dy)/(dx)=(a(t^(2)-1))/(2t)` | |