1.

If x – 2 and x – (1/2) both are the factors of the polynomial nx2 – 5x + m, then show that m = n = 2.

Answer»

p(x) = nx2 – 5x + m 

(x – 2) is a factor of nx2 – 5x + m. 

∴ By factor theorem, 

P(2) = 0 

∴ p(x) = nx2 – 5x + m 

∴ p(2) = n(2)2 – 5(2) + m 

∴ 0 = n(4) – 10 + m 

∴ 4n – 10 + m = 0 …(i) 

Also, (x = 1/2) is a factor of nx2 – 5x + m. 

∴ By factor theorem, p(1/2) = 0 

p(x) = nx2 – 5x + m 

∴ p(1/2) = n(1/2)2 – 5 + m 

0 = (n/4) – (5/2) + m 

∴ 0 = n - 10 + 4m … [Multiplying both sides by 4] 

∴ n = 10 – 4m ……(ii) 

Substituting n = 10 – 4m in equation (i), 

4(10 – 4m) – 10 + m = 0 

∴ 40 – 16m – 10 + m = 0 

∴ -15m + 30 = 0 

∴ -15m = -30 

∴ m = 2 

Substituting m = 2 in equation (ii), 

n = 10 – 4(2) 

= 10 – 8 

∴ n = 2 

∴ m = n = 2



Discussion

No Comment Found