1.

If x = \(\frac{2}3\) and x = -3 are the roots of the quadratic equation ax2 + 2ax + 5x + 10 then find the value of a and b.

Answer»

Given: 

ax2 + 7x + b = 0 

Since, 

x = \(\frac{2}3\) is the root of the above quadratic equation 

Hence, it will satisfy the above equation. 

Therefore, we will get 

a (\(\frac{2}3\))2 + 7 (\(\frac{2}3\)) + b = 0 

\(\frac{4}9\)a + \(\frac{14}3\) + b = 0 

⇒ 4a + 42 + 9b = 0 

⇒ 4a + 9b = – 42 …(1) 

Since, x = –3 is the root of the above quadratic equation 

Hence, It will satisfy the above equation. 

Therefore, we will get 

a (–3)2 + 7 (–3) + b = 0 

⇒ 9a – 21 + b = 0 

⇒ 9a + b = 21 …..(2) 

From (1) and (2), we get 

a = 3, b = – 6



Discussion

No Comment Found