1.

If x is a discrete random variable and let a, b be two constants, show that 1. E(a) = a 2. E(ax) = aE(x) 3. E(ax + b) = aE(x) + b 4. Var (a) = 0 5. Var (ax) = a2 Var (x) 

Answer»

Proof: From the definitions of probability mass function and mathematical expectation

1. E(a) = Σa .P(a) = a. ΣP(x) = a.1 = a. 

∵ ΣP(x) = 1

2. E(ax) = Σax P(x) = aΣx P(x) = a. E(x) 

∵Σx P(x) = E(x)

3. E(ax + b) = E(ax + b). P(x) Removing bracket

= Σax. P(x) + Σb.P(x) = aΣx . P(x) + bΣP(x)

= a. E(x) + b. 1 = aE(x) + b

4. Var (a) = E[a – E(a)]2

∴ V(x) = E[x – E(x)]2

= E[a – a]2 = E(0) = 0

5. Var (an) = E[ax – E(ax)]2 = E[ax – aE(x)]2

∴E(ax) = aE(x)

= a2E(x – E(x)]2 = a2 Var (x).



Discussion

No Comment Found