

InterviewSolution
1. |
If x2(y + z) = a2, y2(z + x) = b2, z2(x + y) = c2, xyz = a b c prove that a2 + b2 + c2 + 2abc = 1 |
Answer» If x2(y + z) = a2, y2(z + x) = b2, z2(x + y) = c2, xyz = a b c x2 (y + z) y2 (z + x) z2 (x + y) = a2b2c2 x2y2z2 (x + y) (y + z) (z + x) = a2b2c2 xyz = abc (x + y) (y + z) (z + x) = 1 a2 + b2 + c2 + 2abc => x2(y + z) + y2 (z + x) + z2(x + y) + 2xyz Put y = - z 0 + z2(z + x) + z2(x - z) + 2x (-z)z z3 + z2x + z2x - z3 - 2z2x = 0 ∴ (y + z) is factors Similarly (x + y) & (x + z) are factors x2(y + z) + y2(z + x) + z2(x + y) + 2xyz = k (x + y) (y + z) (x + z) For k put x = 0 y = 1 z = 1 0 + 1 + 1 + 0 = k (1) (2) (1) 2 = 2 k k = 1 x2(y + z) + y2(z + x) + z2(x + y) + 2xyz = (x + y) (y + z) (z + x) and (x + y) (y + z) (z + x) = 1 ∴ x2(y + z) + y2(z + x) + z2 (x + y) + 2xyz = 1 |
|