InterviewSolution
Saved Bookmarks
| 1. |
If `xcosalpha+ysinalpha=xcosbeta+ysinbeta=2a` then `cosalpha cosbeta=`A. `(4ax)/(x^(2)+y^(2))`B. `(4a^(2)-y^(2))/(x^(2)+y^(2))`C. `(4ay)/(x^(2)+y^(2))`D. `(4a^(2)-x^(2))/(x^(2)+y^(2))` |
|
Answer» Correct Answer - B We have, `x cos alpha+ysin alpha=xcos beta+y sinbeta=2a` `impliesalpha,beta"are the roots of"x cos theta+y sintheta=2a.` Now, `x costheta+ysin theta=2a` `implies(xcostheta-2a)^(2)=y^(2)sin^(2)theta` `impliesx^(2)cos^(2)theta-4axcos theta+4a^(2)-y^(2)(1-cos^(2)theta)` `implies(x^(2)-y^(2))cos^(2)theta-4ax cos theta+4a^(2)-y^(2)=0` Clearly, `cos theta, cos beta` are the roos of this equation. `thereforecos alphacos beta=(4a^(2)-y^(2))/(x^(2)+y^(2))` |
|