1.

If y=f(x) is the solution of differential equation , e^y((dy)/(dx)-2)=e^(3x) such that f(0)=0 , then f(2) is equal to :

Answer»

3
5
6
None of these

Solution :Put `e^y =t rArr e^y DY= dtrArr (dt)/(dx)-2t=e^(3X)`
I.F. =`e^(INT -2dx) =e^(-2x)`
`t.e^(-2x) = int e^(3x). E^(-2x) dx`
`t.e^(-2x) = inte^X dx= e^x +c , e^y e^(-2x) =e^x + c`
Put x=0 ,y=0 we get `e^0 .e^0 =1+c`
`rArr e^y e^(-2x)= e^x`
`e^y =e^(3x) rArr y=3x rArr f(x)=3x`


Discussion

No Comment Found

Related InterviewSolutions