 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `y=(tan^(-1)x)^2`, then `(x^2+1)^2 (d^2y)/(dx^2) + 2x(x^2+1) dy/dx=`A. 4B. 2C. 1D. 0 | 
| Answer» Correct Answer - A We have, `y=(tan^(-1)x)^(2)` On differentiating w.r.t.x, we get `(dy)/(dx)=(2tan^(-1)x)/(1+x^(2))` `rArr(1+x^(2))(dy)/(dx)=2tan^(-1)x` On squaring both sides, we get `(1+x^(2))^(2)((dy)/(dx))^(2)=4(tan^(-1)x)^(2)` `rArr(1+x^(2))^(2)((dy)/(dx))^(2)=4y" "[becausey=(tan^(-1)x)^(2)]` Again, differentiating w.r.t.x, we get `(1+x^(2))^(2)(2(dy)/(dx)*(d^(2)y)/(dx^(2)))+2(1+x^(2))(2x)((dy)/(dx))^(2)=4(dy)/(dx)` On dividing both sides by `2(dy)/(dx)` we get `(1+x^(2))^(2)((d^(2)y)/(dx^(2)))+2x(1+x^(2))(dy)/(dx)=4` | |