1.

If y = \(x+\frac{1}{x}\) then x4 + x3 – 4x2 + x + 1 = 0 can be reduced to which one of the following ? (x ≠ 0)(a) y2 + y – 2 = 0 (b) y2 + y – 4 = 0 (c) y2 + y – 6 = 0 (d) y2 + y + 6 = 0

Answer»

(c) y2 + y – 6 = 0

x4 + x3 – 4x2 + x + 1 = 0

⇒ x2 + x - 4 + \(\frac{1}{x}\) + \(\frac{1}{x^2}\) = 0

⇒ \(x^2+\frac{1}{x^2}\) + \(x+\frac{1}{x}\) - 4 = 0 

⇒ \(\big(x+\frac{1}{x}\big)^2\) - 2 + \(\big(x+\frac{1}{x}\big)\) - 4 = 0

y2 + y – 6 = 0                      \(\big(∵x+\frac{1}{x}=y\big)\)



Discussion

No Comment Found