InterviewSolution
Saved Bookmarks
| 1. |
If `y=x^(x), "find" (dy)/(dx).` |
|
Answer» We have, `y=x^(2)` `therefore log y=x log x` On differentiating w.r.t. x, we get `1/y (dy)/(dx)=x/x +log x` `(dy)/(dx)=y+ylog x` `(dy)/(dx)=x^(x)(1+logx)` `(becaue y=x^(3))` |
|