1.

If `y=x^(x), "find" (dy)/(dx).`

Answer» We have, `y=x^(2)`
`therefore log y=x log x`
On differentiating w.r.t. x, we get
`1/y (dy)/(dx)=x/x +log x` `(dy)/(dx)=y+ylog x`
`(dy)/(dx)=x^(x)(1+logx)`
`(becaue y=x^(3))`


Discussion

No Comment Found