1.

If z = (ax + b)(cy + d), then find \(\frac{∂z}{∂x}\) and \(\frac{∂z}{∂y}\).

Answer»

Given, z = (ax + b)(cy + d) 

Differentiating partially with respect to x we get, 

\(\frac{∂z}{∂x}\) = (cy + d) \(\frac{∂}{∂x}\)(ax + b) [∵ (cy + d) is constant] 

= (cy + d)(a + 0) 

= a(cy + d) 

Differentiating partially with respect to y we get, 

\(\frac{∂z}{∂y}\) = (ax + b) \(\frac{∂}{∂y}\)(cy + d) 

= (ax + b)(c + 0) 

= c(ax + b)



Discussion

No Comment Found