1.

In any ∆ABC, the sides of a triangle are a = 4, b = 6 and c = 8, show that: 8 cos A + 16 cos B + 4 cos C = 17.

Answer»

Given as

Sides of a triangle are a = 4, b = 6 and c = 8

On using the formulas,

Cos A = (b2 + c2 – a2)/2bc

Cos B = (a2 + c2 – b2)/2ac

Cos C = (a2 + b2 – c2)/2ab

Therefore now let us substitute the values of a, b and c we get,

Cos A = (b2 + c2 – a2)/2bc

= (62 + 82 – 42)/2 × 6 × 8

= (36 + 64 – 16)/96

= 84/96

= 7/8

Cos B = (a2 + c2 – b2)/2ac

= (42 + 82 – 62)/2 × 4 × 8

= (16 + 64 – 36)/64

= 44/64

Cos C = (a2 + b2 – c2)/2ab

= (42 + 62 – 82)/2 × 4 × 6

= (16 + 36 – 64)/48

= -12/48

= -1/4

Now considering the LHS

8 cos A + 16 cos B + 4 cos C = 8 × 7/8 + 16 × 44/64 + 4 × (-1/4)

= 7 + 11 – 1

= 17

Thus proved.



Discussion

No Comment Found