1.

In any ΔABC, prove that a sin A – b sin B = c sin (A – B)

Answer»

To prove: a sin A – b sin B = c sin (A – B) 

Left hand side, 

= a sin A – b sin B = (b cosC + c cosB) sinA – (c cosA + a cosC) sinB 

= b cosC sinA + c cosB sinA – c cosA sinB – a cosC sinB 

= c(sinA cosB – cosA sinB) + cosC(b sinA – a sinB)

We know a/sinA = b/sinB = c/sinC = 2R that, where R is the circumradius.

Therefore, 

= c(sinA cosB – cosA sinB) + cosC(2R sinB sinA – 2R sinA sinB) 

= c(si nA cosB – cosA sinB) 

= c sin (A – B) 

= Right hand side. [Proved]



Discussion

No Comment Found

Related InterviewSolutions