InterviewSolution
| 1. |
In Fig. a circle touches the side DF of AEDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of ΔEDF isA. 18 cm B. 13.5 cm C. 12 cm D. 9 cm |
|
Answer» Answer is A. 18 cm Given: EK = 9 cm Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal. By above property, EM = EK = 9 cm (tangent from E) DK = DH (tangent from D) FM = FH (tangent from F) Now, Perimeter of ∆EDF = ED + DF + FE ⇒ Perimeter of ∆EDF = (EK – KD) + (DH + HF) + (EM – MF) [∵ED = EK – KD DF = DH + HF FE = EM – MF] ⇒ Perimeter of ∆EDF = EK – KD + DH + HF + EM – MF ⇒ Perimeter of ∆EDF = EK – DH + DH + HF + EM – HF [∵DK = DH and FM = FH] ⇒ Perimeter of ∆EDF = EK + EM ⇒ Perimeter of ∆EDF = 9 cm + 9 cm ⇒ Perimeter of ∆EDF = 18 cm Hence, Perimeter of ∆EDF = 18 cm Option AHope you like the answer |
|