1.

In Fig.. (a) ΔABC is right angled at C and DE ⊥ AB. Prove that ΔABC ~ ΔADE and hence find the lengths of AE and DE.

Answer»

In ΔABC, by Pythagoras theorem 

AB2 = AC2 + BC2

Or, AB2 = 52 + 122

Or, AB2 = 25 + 144

Or, AB2 = 169

Or AB = 13 (Square root both side) 

In Δ AED and Δ ACB

∠A = ∠A (Common)

∠AED = ∠ACB (Each 90°)

Then, Δ AED ~ Δ ACB(Corresponding parts of similar triangle are proportional) 

So, AE/AC = DE/ CB =AD/ AB 

Or, AE/5 = DE/12 = 3/13 

Or, AE/5 = 3/13 and DE/12 = 3/13 

Or, AE = 15/13cm and DE = 36/13 cm



Discussion

No Comment Found

Related InterviewSolutions