1.

In Fig, DE || BC, If DE = 4 m, BC = 6 cm and Area (ΔADE) = 16 cm2, find the area of ΔABC.

Answer»

Given, 

DE ∥ BC. 

In ΔADE and ΔABC 

We know that, 

∠ADE = ∠B  [Corresponding angles] 

∠DAE = ∠BAC  [Common] 

Hence, ΔADE ~ ΔABC (AA Similarity)

Since the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides, we have, 

\(\frac{Ar(ΔADE)}{Ar(ΔABC)}\) = \(\frac{DE^2}{BC^2}\) 

\(\frac{16}{Ar(ΔABC)}\) = \(\frac{42}{62}\)

⇒ Ar(ΔABC) = \(\frac{(62 \times 16)}{42}\) 

⇒ Ar(ΔABC) = 36 cm2



Discussion

No Comment Found

Related InterviewSolutions