1.

In fig, if AB∥CD, find the value of x.

Answer»

It’s given that AB∥CD. 

Required to find the value of x.

We know that, 

Diagonals of a parallelogram bisect each other 

So, 

\(\frac{AO}{CO}\) = \(\frac{BO}{DO}\) 

\(\frac{(6x – 5)}{(2x + 1)}\) = \(\frac{(5x – 3)}{(3x – 1)}\) 

(6x – 5)(3x – 1) = (2x + 1)(5x – 3) 

3x(6x – 5) – 1(6x – 5) = 2x(5x – 3) + 1(5x – 3) 

18x2 – 10x2 – 21x + 5 + x +3 = 0 

8x2 – 16x – 4x + 8 = 0 

8x(x – 2) – 4(x – 2) = 0 

(8x – 4)(x – 2) = 0 

x = \(\frac{4}{8}\) = \(\frac{1}{2}\) or x = -2 

∴ x = \(\frac{1}{2}\)



Discussion

No Comment Found

Related InterviewSolutions