1.

In fig, if AB∥CD, find the value of x.

Answer»

It’s given that AB∥CD. 

Required to find the value of x.

We know that, 

Diagonals of a parallelogram bisect each other. 

So, 

\(\frac{AO}{CO}\) = \(\frac{BO}{DO}\) 

\(\frac{4}{(4x – 2)}\) = \(\frac{(x +1)}{(2x + 4)}\) 

4(2x + 4) = (4x – 2)(x +1) 

8x + 16 = x(4x – 2) + 1(4x – 2) 

8x + 16 = 4x2 – 2x + 4x – 2 

-4x2 + 8x + 16 + 2 – 2x = 0 

-4x2 + 6x + 8 = 0 

4x2 – 6x – 18 = 0 

4x2 – 12x + 6x – 18 = 0 

4x(x – 3) + 6(x – 3) = 0 

(4x + 6) (x – 3) = 0 

∴ x = – \(\frac{6}{4}\) or x = 3



Discussion

No Comment Found

Related InterviewSolutions