1.

In Fig. O is the centre of the circle, Bo is the bisector of ∠ABC. Show that AB = AC

Answer»

Given that, 

BO is the bisector of ∠ABC 

To prove : 

AB = BC 

Proof : 

∠ABO = ∠CBO 

(BO bisector of ∠ABC) 

(i) OB = OA (Radii) 

Therefore, 

∠ABO = ∠DAB 

(Opposite angle to equal sides are equal) 

(ii) OB = OC (Radii) 

Therefore, 

∠CBO = ∠OCB 

(Opposite angles to equal sides are equal) 

(iii) Compare (i), (ii) and (iii) 

∠OAB = ∠OCB 

(iv) In triangle OAB and OCB, we have 

∠OAB = ∠OCB [From (iv)] 

∠OBA = ∠OBC (Given) 

OB = OB (Common) 

By AAS congruence rule,

Δ OAB ≅ Δ OCB 

AB = BC (By c.p.c.t)

Hence, proved



Discussion

No Comment Found

Related InterviewSolutions