

InterviewSolution
Saved Bookmarks
1. |
In given figure, ABC is a triangle right angled at B and BD`bot`AC. If AD=4 cm and CD= 5 cm, then find BD and AB. |
Answer» Given`DeltaABC` in which`angleB=90^(@) and BDbotAC` Also, AD=4 cm and CD= 5 cm In `DeltaADB and DeltaCDB, angleADB=angleCDB` [each equal to `90^(@)`] and `angleBAD=angleDBC`[each equal to `90^(@)-angleC`] `therefore DeltaDBA~DeltaDCB` [by AAA similarity criterion] Then, `(DB)/(DA)=(DC)/(DB)` `rArr DB^(2)=DAxxDC` `rArrDB^(2)=4xx5` `rArrDB=2sqrt5cm` In right angled `DeltaBDC, BC^(2)=BD^(2)+CD^(2)` [by phythogoras therom] `rArrBC^(2)=(2sqrt5)^(2)+(5)^(2)` =20+25=45 `rArrBC=sqrt(45)=3sqrt5` Again, `DeltaDBA~DeltaDCB` `therefore(DB)/(DC)=(BA)/(BC)` `rArr(2sqrt5)/5=(BA)/(3sqrt5)` `therefore BA=(2sqrt5xx3sqrt5)/5=6 cm` Hence, BD=`2sqrt5` cm and AB= 6 cm |
|